Lipopolysaccharide Effect on Vascular Endothelial Factor and Matrix Metalloproteinases in Leukemic Cell Lines In vitro

Fatemeh Hajighasemi 1,*; Mohammad Hossein Gheini 2

1Department of Immunology, Faculty of Medicine, Shahed University, Tehran, IR Iran
2Department of Pathology, Faculty of Medicine, Shahed University, Tehran, IR Iran
*Corresponding author: Fatemeh Hajighasemi, Department of Immunology, Faculty of Medicine, Shahed University, P. O. Box: 14155-7435, Tehran, IR Iran. Tel: +9821-88964792, Fax: +9821-88966310, E-mail: resoome@yahoo.com

Received: October 14, 2014; Accepted: March 10, 2015

Background: Angiogenesis, the process of new vessels generation, played a critical role in tumor invasion and metastasis. Vascular Endothelial Growth Factor (VEGF), as a cytokine, and Matrix Metalloproteinases (MMPs), has been the important factors that involved in angiogenesis. Lipopolysaccharide (LPS) had an essential effect on angiogenesis.

Objectives: In this study the effect of LPS on VEGF production and MMP-2/MMP-9 activity in two leukemic cell lines has assessed in vitro.

Materials and Methods: Human leukemic U937 and THP1 cells have cultured in complete RPMI medium. Then the cells at the exponential growth phase have incubated with different concentrations of LPS (0 - 4 μg/mL) for 48 hours. Then the level of VEGF production and MMP-2/MMP-9 activity in cell culture supernatants have evaluated with the ELISA standard kits and gelatin zymography respectively.

Results: U937 cells have produced a large amount of VEGF without any stimulus and LPS has not shown any substantial effect on VEGF production by these cells. However THP1 cells have produced a small amount of VEGF without stimulation and LPS significantly has increased VEGF production in these cells dose-dependently. Moreover LPS significantly has augmented the MMP-2/MMP-9 activity in the both leukemic cell lines in a dose-dependent manner.

Conclusions: Our results have shown that LPS might be a potential inducer/enhancer of VEGF production and MMP-2/MMP-9 activity (angiogenic factors) in leukemia. Moreover the LPS effect on angiogenesis might be in part, due to its stimulatory effects on VEGF and MMPs. Overall LPS-stimulated leukemic cells might be good models for study and planning the useful therapeutic approaches for angiogenesis-dependent diseases.

Keywords: VEGF; MMP; LPS; Leukemia; Angiogenesis

1. Background

Angiogenesis (creation of new vessels or replenish of the pre-existing vascular networks) has played a critical role in some pathological conditions such as tumor expansion and metastasis (1-3). Many factors have involved in angiogenesis including hormones, cytokines and Matrix Metalloproteinases (MMPs) (4-6). Vascular Endothelial Growth Factor (VEGF) was a cytokine which has produced by a number of cells and had a key role in angiogenesis and inflammation (5, 7). VEGF has overexpressed in many malignant cancers (8, 9). The increased VEGF level has reported in serum of leukemia patients and also leukemia cell culture supernatants (8, 10). MMPs were a large group of enzymes that have broken down extracellular matrix result in tissue remodeling and had an important role in angiogenesis and inflammation (6, 11). Lipopolysaccharide (LPS) was endotoxins constitute the major component of outer membrane in gram negative bacteria (12). The induction of angiogenesis by LPS has shown (13-15). Also LPS has increased the VEGF production in peripheral blood mononuclear cells in vitro (16). Moreover the effects of LPS in leukemiogenesis and in vitro activation of leukemic cells have reported (17, 18). Besides the angiogenesis and angiogenic factors had important role in leukemia (19, 20).

2. Objectives

In this study the effect of LPS on angiogenic factors in two leukemic cell lines has studied in vitro.

3. Materials and Methods

3.1. Reagents

RPMI-1640 medium, penicillin, streptomycin, Lipopolysaccharide (LPS), and Trypan Blue (TB) were from sigma (USA). Fetal Calf Serum (FCS) was from Gibco (USA). Microtiter plates, flasks and tubes were from Nunc (Falcon, USA). VEGF standard ELISA kit has obtained from R and D company (USA).
3.2. Cell Lines

Human leukemic monocytes [U937 (NCBI C130) and THP1 (NCBI C563)], have obtained from NCBI (National Cell Bank of Iran, Pasteur Institute of Iran, Tehran). The cells have maintained in RPMI-1640 medium supplemented with 10% FCS and incubated in 5% CO₂ at 37°C.

3.3. Cell Culture and Treatment

The method has described in detail elsewhere (10). Briefly, the human leukemic cells have cultured in RPMI-1640 medium supplemented with 10% FCS, penicillin (100 IU/mL) and streptomycin (100 µg/mL) at 37°C in 5% CO₂. The cells have seeded at a density of 106 cells/mL and prior to experiments have treated in fresh medium. Then the cells have incubated with different concentrations of LPS (0 - 4 µg/mL) for 48 hours. The supernatants of cell cultures have collected, centrifuged and stored at 80°C for next experiments. All experiments have done in triplicate.

3.4. Evaluation of VEGF Production by ELISA

The amount of VEGF have secreted in the cell culture supernatants by human leukemic cell lines has measured with the Quantikine human VEGF ELISA kits (R and D systems) according to the manufacturer’s instructions. This assay has used the quantitative sandwich enzyme immunoassay technique. Complete RPMI medium has used as control and human recombinant VEGF165 has employed as standard for drawing the standard curves.

3.5. Evaluation of MMP-2/MMP-9 Activity by Gelatin Zymography

MMP-2/MMP-9 activity in cell-conditioned media has evaluated by gelatin zymography technique according to the modified Kleiner and Stetler-Stevenson method (21). Briefly cell culture supernatants have subjected to Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) on 10% polyacrylamide gel copolymerized with 2 mg/mL gelatin A in the presence of 0.1% SDS under non-reducing conditions at a constant voltage of 80 V. After electrophoresis, gels have washed in 2.5% Triton X-100 for one hour to remove SDS and then incubated in a buffer containing 0.1 M Tris-HCl, PH 7.4 and 10 mM CaCl₂ overnight at 37°C. Afterwards the gels have stained with 0.5% Coomassie Brilliant Blue and then destained. Proteolysis activities of enzyme have detected as clear bands of gelatin lysis against a blue background. The relative intensity of lysed bands to control have measured by using UVI Pro gel documentation system (GDS_8000 system) and expressed as relative gelatin lytic activity.

3.6. Statistical Analysis

VEGF level quantification and relative gelatinolytic activity of MMP-2/MMP-9 in cell-conditioned media has performed in three independent experiments and the results have expressed as Mean ± SEM. Statistical comparisons between groups have made by analysis of variance (ANOVA). P < 0.05 has considered significant. Test of multiple comparison of Tukey has applied (5%) for statistically significant differences. The software SPSS 11.5 and Excel 2003 has used for statistical analysis and graph making respectively.

4. Results

4.1. Effect of LPS on VEGF Production in Human Leukemic Cell Lines

Results depicted in Table 1 and Figure 1, demonstrate that U937 cells have produced a large amount of VEGF without any stimulation and LPS have not shown any significant effect on VEGF production by these cells. Furthermore according to our findings, VEGF production was rather low in unstimulated THP1 cells but LPS significantly increased VEGF production in these cells after 48 hours incubation time dose dependently as seen in Table 1 and Figure 1 (P < 0.05).

4.2. Effect of LPS on MMP Activity in Human Leukemic Cell Lines

4.2.1. Effect of LPS on MMP-2 Activity in Human Leukemic Cell Lines

When U937 cells have cultured without any stimulation, faint bonds related to MMP-2 activity were detectable and LPS significantly increased MMP-2 activity in U937 cells after 48 hours incubation time in comparison with untreated control cells. The enhancing effect of LPS on MMP-2 activity in U937 cells was dose-dependent as has depicted in Table 2 and Figure 2 (P < 0.05).
Table 1. Effect of LPS on VEGF Production in Human Leukemic Cell Lines ab

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>LPS Concentration, μg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>U937</td>
<td>1.8 ± 0.035, 0.7</td>
</tr>
<tr>
<td>THP1</td>
<td>0.37 ± 0.035, 0.0034</td>
</tr>
</tbody>
</table>

a P < 0.05 was considered significant.

b Values are presented as Mean ± Standard Deviation, PV.

Table 2. Effect of LPS on MMP-2 Activity in Human Leukemic Cell Lines ab

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>LPS Concentration, μg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>U937</td>
<td>0.42 ± 0.032, 0.00094</td>
</tr>
<tr>
<td>THP1</td>
<td>0.26 ± 0.04, 0.00534</td>
</tr>
</tbody>
</table>

a P < 0.05 was considered significant.

b Values are presented as Mean ± Standard Deviation, PV.

Figure 2. Effect of LPS on MMP-2 Activity in U937 and THP1 Leukemic Cells

The U917 leukemic cells (1×10^6 cells/mL) were cultured in complete RPMI-1640 medium and then were stimulated with different concentrations of lipopolysaccharide (LPS) (0 - 4 μg/mL) for 48 hours. At the end of incubation, the MMP-activity in conditioned medium was quantified by gelatin zymography. Data are Mean ± SEM of three independent experiments. *P < 0.05 was considered significant.

However MMP-2 activity in unstimulated THP-1 leukemic cells was not detectable and LPS induced MMP-2 activity in these cells after 48 hours incubation time dose dependently compared with untreated control cells as it has shown in Table 2 and Figure 2 (*P < 0.05).

4.2.2. Effect of LPS on MMP-9 Activity in Human Leukemic Cell Lines

When U937 cells cultured alone with no stimulus, faint bands related to MMP-9 activity have detected. LPS stimulation, significantly increased MMP-9 activity in U937 cells compared with untreated control cells. The LPS increased MMP-9 activity in U937 cells was dose-dependent as illustrated in Table 3 and Figure 3 (*P < 0.05). Nevertheless MMP-9 activity in unstimulated THP1 leukemic cells was not evident and LPS induced MMP-9 activity in these cells after 48 hours incubation time dose dependently compared with untreated control cells as it has shown in Table 3 and Figure 3 (*P < 0.05).

5. Discussion

The results of this study have shown that U937 and THP1 leukemic cells were potential producers of VEGF, MMP-2 and MMP-9. Accordingly, U937 cells have produced a great amount of VEGF without any stimulus and LPS has not shown any significant effect on VEGF production by U937 cells. Whereas THP1 cells have produced an evident amount of VEGF without stimulation and LPS has significantly increased VEGF secretion in this cell line. Therefore our results have shown that there were various patterns of VEGF production in leukemic cells and LPS had different effect on VEGF production in different leukemic cells. Consequently sensitivity of various leukemic cells to LPS-induced VEGF secretion was different. Diverse patterns of VEGF expression in tumorous and normal tissues have revealed and different cancers exhibit different profiles of VEGF secretion (22-24). VEGF had a key role in tumor expansion and metastasis (25, 26) and was an important biomarker of tumor (27). Thus VEGF might be a good prognostic and diagnostic marker (28-31). Similar to our findings, the presence of VEGF-C protein in supernatants of PMA-differentiated HL-60 leukemic cells after LPS stimulation has shown (32). Also increase of VEGF production by LPS in peripheral blood mononuclear cells has revealed in vitro (16). Moreover LPS treatment of murine skin wounds with topical LPS has increased the secretion of some growth factors including VEGF at the wound site (33). Furthermore induction of angiogenesis by LPS has shown (32). Also increase of VEGF production by LPS in peripheral blood mononuclear cells has revealed in vitro (16). Moreover LPS treatment of murine skin wounds with topical LPS has increased the secretion of some growth factors including VEGF at the wound site (33). Furthermore induction of angiogenesis by LPS has shown (13-15). In addition VEGF had a key role in angiogenesis (5, 7). So the induction of angiogenesis by LPS might be in part due to its stimulatory effect on VEGF production. Currently the anti-leukemic effects of VEGF inhibitors has reported (34, 35). So inhibition of LPS might have potential implication in treatment of leukemia.
According to the results of this study, LPS has increased MMP-2/MMP-9 activity in U937 leukemic cells, and then has induced MMP-2/MMP-9 in THP1 leukemic cells. Consequently pattern of MMP-activity in U937 and THP1 cells was somewhat different. Similar to our findings, diverse profiles of MMPs expression in various tumor cells have reported (36, 37). MMPs had an important role in angiogenesis (6, 11). The induction of angiogenesis by LPS has also shown (13-15). Thus the stimulation of angiogenesis by LPS might be partially due to its stimulatory effect on MMP-2/MMP-9 activities. In addition the effects of LPS in leukemiogenesis and development of leukemia particularly CLL has reported by several studies (44-46). The induction of angiogenesis by LPS has also shown (13-15). Thus LPS might have noticeable effect in leukemia progression through stimulation of pathologic angiogenesis.

As a whole avoidance/treatment of bacterial infections especially their LPS could be essential in management of tumors such as leukemia in which pathologic angiogenesis has played considerable role. In addition according to the results of this study, LPS-stimulated U937 and THP1 leukemic cells could be precious screening tools for VEGF/MMP inhibitors and subsequently planning the novel drugs for treatment of refractory leukemias. Also other studies about LPS effects on VEGF/MMP expression in other malignant cells as well as in vivo models have been warranted.

LPS-stimulated U937 and THP1 leukemic cells could be useful tools for screening of VEGF/MMPs modulators and therefore setting up of novel drugs for treatment of leukemia and other related cancers.

Acknowledgements

Thanks are due to Abbas Mirshafiey for scientific consultations.

Authors’ Contributions

Fatemeh Hajighasemi, designed and performed the study, collected and analyzed the data and wrote this article. Mohmmad Hossein Gheini, revised the paper. All authors read and approved the final manuscript.

References

Table 3. Effect of LPS on MMP-9 Activity in Human Leukemic Cell Lines a,b

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>LPS Concentration, µg/mL</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>U937</td>
<td>0.48 ± 0.04, 0.0011</td>
<td>1.36 ± 0.03, 0.0000051</td>
<td>1.43 ± 0.045, 0.0000096</td>
<td></td>
</tr>
<tr>
<td>THP1</td>
<td>0.29 ± 0.03, 0.00139</td>
<td>0.82 ± 0.052, 0.0013</td>
<td>1.3 ± 0.056, 0.0016</td>
<td></td>
</tr>
</tbody>
</table>

a P < 0.05 was considered significant.

b Values are presented as Mean ± Standard Deviation, PV.

Figure 3. Effect of LPS on MMP-9 Activity in U937 and THP1 Leukemic Cells

The THP1 leukemic cells (1 × 10⁶ cells/ml) were cultured in complete RPMI-1640 medium and then were stimulated with different concentrations of lipopolysaccharide (LPS) (0 - 4 µg/mL) for 48 hours. At the end of treatment, MMP-9 activity in conditioned medium was measured by gelatin zymography. (A) Zymogram of MMP-9 activity in human leukemic U937 cells. Lane 1 represents untreated U937 cells. Lanes 2 to 4 represent LPS at 1, 2 and 4 µg/ml concentrations respectively. (B) MMP-9 activity in U937 and THP1 leukemic cells was measured by scanning the zymograms and densitometric analysis of MMP-9 bands. Data are Mean ± SEM of three independent experiments. *P < 0.05 was considered significant.

